[CELLiST] What is Essential Supplements for Using Media

페이지 정보

작성자 ACK 조회 1,027 작성일 23-10-30 17:26

본문

Application Note: L-Glutamine Supplementation in CHO Cell Culture

Background
L-glutamine is an essential amino acid often used to support the growth of CHO cell cultures. Glutamine supports the growth and protein production of cells that have high energy requirements and high protein production. It is an essential nitrogen source for buildign upmolecules such as nucleotides, 
amino acids and vitamins. However, L - glutamine is unstable at physiological pH in liquid media. That is why it is often added to the media right before the inoculation of cells. Alternatively, glutamine dipeptides such as Alanyl-Glutamine with higher stability (for example, Ajinomoto’s AminoStable™) can be used to ensure sustainability of the glutamine source. Additional consideration to be taken into account when using an L-glutamine source is the
production of ammonia, which at high concentrations can be detrimental to culture growth (See ‘Note on Toxic Byproducts’ on Pg. 3).

Effect of L-Glutamine Supplementation on Growth and Productivity
The graphs below present growth profiles in terms of viable cell density (VCD), as well as productivity (protein titer), for two cell lines, CHO-K1 and
CHO-DG44. Significant effect of L-glutamine addition can be seen, especially in the case of CHO-K1. Here, even the lowest dose of 2mM L-glutamine (triangles), added on Day 0 of the culture, led to rapid cell growth and transition to exponential growth phase (CHO-K1, top-left graph, Day 2-4), while in the case of no L-glutamine addition (circle) biomass growth was extremely slow and did not reach transition to exponential growth  phase  with in  the
two weeks of culture. Correspondingly, the amount of protein produced is greatly 
influenced by the culture growth, as can be seen on the top right-side graph: protein titer at Day 9 is over 3 times higher when L-glutamine was supplemented compared to the case with no glutamine addition. In the case
of CHO- 
DG44 cell line (bottom graphs), although the effect of L-glutamine supplementation is less substantial, it did allow quicker transition to
exponential growth phase, and the overall protein titer was increased by ~20% (2 mM) 
compared to the case of no glutamine addition (lower-right
graph). It is also important to note that supplementing 
too much L-glutamine can be detrimental to culture growth, as seen in the top-left graph for
CHO-K1 line: optimal 
growth was observed for 2 mM L-glutamine, while larger doses led to earlier decrease in cell density.


01c56b8e5f26e472d44bdefbdb91528c_1715171770_9181.png

Figure 1. Effect of L-glutamine supplementation on CHO culture. Growth profile (viable cell density, VCD) and protein titer throughout fed-batch culture for CHO-K1 and CHO-DG44
cell lines (both are IgG1-producing cell lines),
at different concentrations of L-glutamine supplmentation. L- glutamine was added one time, in Day 0,at concentrations of either 0
(circle), 2 mM (triangle), 4 mM (square), 6 mM (diamond) or 8 mM (‘x’). 
Media used: CELLiST™ BASAL3 and FEED2 (feed added on days 4, 7, 9, and 11 at 6% for CHO-K1 and 4% for CHO-DG44 cell line). Culture was stopped when viability dropped below 70%.


CHO-GS Cell Lines (glutamine synthetase selection system)
Cell lines that incorporate the glutamine synthetase (GS) selection system (often termed ‘CHO-GS’, or CHOZN® lines) usually produce enough
amount of endogenous L-glutamine to sustain their growth. The GS enzyme plays an 
essential role in the metabolism of nitrogen by catalyzing the
condensation of glutamate and ammonia to form 
glutamine. In this cell line, depending on the specific characteristics of the clone (such as copy
number, etc.), addition 
of exogenous L-glutamine source is usually not required. However, as can be seen in the graph below for a CHO-GS line, L-glutamine supplementation (2-4 mM) can lead to a marginal increase in the overall titer.

01c56b8e5f26e472d44bdefbdb91528c_1715171812_4476.png

Figure 2. Effect of L-glutamine supplementation in CHO-GS cell line. Growth profile (viable cell density, VCD) and protein titer throughout fed-batch culture for IgG-producing
CHO-GS cell line, at difference concentrations of 
L-glutamine supplementation. L-glutamine was added one time, in Day 0, at concentrations of either 0 (circle), 2 mM (triangle),
4 mM (square), 6 mM (diamond) or 8 mM (‘x’). Media used: CELLiST™ 
BASAL3 and FEED2 (feed added on days 4, 7, 9, and 11 at 4% of initial volume). Culture was stopped when
viability dropped below 70%.

Conclusion
Because its importance in cell growth and function, and due to the difference in glutamine requirements between cell lines, it is important to optimize
glutamine supplementation per cell line. In general, it is 
recommended  to  add  glutamine  for  encouraging  culture  growth,  especially  when
performing  cell 
adaptation, or when switching from one culture medium to another, as this will support the cells in their adaptation to the new medium. For example, when switching to CELLiST™ media, we recommend supplementing the cell culture with 2-4 mM of L-glutamine, to ensure smooth
transition and proper 
adaptation of your cell line to the new CELLiST™ medium. As mentioned previously, consideration should be taken not to
overfeed the culture with of L-glutamine source, as this can lead to excess in ammonia 
production, which can be detrimental to cell growth.

Note on Toxic Byproducts (Ammonia and Lactate)
Below graph shows ammonia and lactate levels for two cell lines, CHO-K1 and CHO-GS. As can be seen, ammonia concentrations  are  directly 
correlated  with  L-glutamine  supplement  concentrations.  However,  at  L-glutamine 
concentrations of 2-4mM, increase in ammonia levels is minimal and would have little detrimental effect on culture growth. As for lactate (right side), it can be seen that for CHO-K1 line addition of as little as 2 mM
L-glutamine would 
lead to proper growth and lactate profile, with lactate consumption taking place after Day 4. In the case of no glutamine addition,
culture growth is slow and lactate continues to accumulate beyond Day 7.

In the case of CHO-GS, the effect of L-glutamine supplementation is minimal and does not have much effect on culture growth and lactate profile.
However, higher concentrations of glutamine will lead to higher ammonia levels, 
which are toxic and can be detrimental to culture growth (lower-left
graph). This can also be seen in Figure 2 (left 
graph), where higher doses of L-glutamine (6 and 8mM) lead to reduced cell growth and productivity. 


01c56b8e5f26e472d44bdefbdb91528c_1715171905_3858.png

Figure 3. Effect of L-glutamine supplementation on ammonia (NH3) and lactate profiles in CHO-K1 and CHO-GS cell line.

Concentrations of the two byproducts are shown at difference doses of L-glutamine supplementation. L-glutamine was added one time, in Day 0, at
concentrations of 
either 0 mM (circle), 2 mM (triangle), 4 mM (square), 6 mM (diamond) or 8 mM (‘x’). Media used: CELLiST™ BASAL3 and FEED2
(feed added on 
days 4, 7, 9, and 11 at 6% for CHO-K1 and 4% for CHO-GS cell line). Culture was stopped when viability dropped below 70%.


Effect of Poloxamer 188 (P188) supplementation on mAb-producing CHO cell culture 

Attached Files

댓글목록

등록된 댓글이 없습니다.

SAMPLE
REQUEST
Logo

Start typing and press enter!